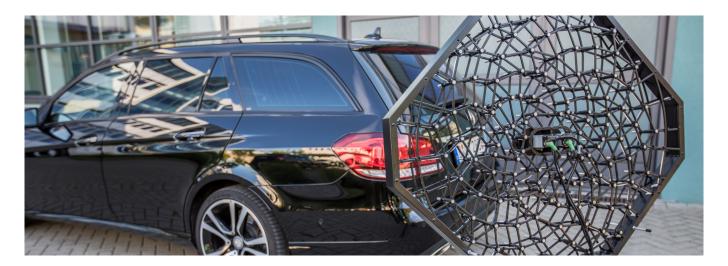


Fibonacci72 AC Pro

72 CHANNEL SYSTEM FOR BEAMFORMING AND HOLOGRAPHY – FAR FIELD AND NEAR FIELD

BENEFITS

- Easy handling and accurate microphone positioning
- Beamforming and holography methods can be used with the same hardware
- Minimizes reflections, sound pressure doubling effects on the surface, and imposed resonance effects due to the acoustically transparent array design.


The Fibonacci Array is the first Acoustic Camera that allows near field as well as far field measurements.

The aluminum structure of the array guarantees the maximum possible acoustic transparency as well as a precise microphone alignment. Due to the spiral microphone arrangement, beamforming achieves the highest possible spatial resolution and the best possible map dynamics.

In combination with the NoiseImage analysis software, the specially optimized microphone arrangement allows the user to use the Fibonacci Array for holography (SONAH and HELS) and standard beamforming analyses. Two Baumer cameras (one with an extra wide-angle lens for near field measurements) provide ideal reference images.

APPLICATIONS

- Environmental noise control
- Pass-by measurements of vehicles
- Wind tunnel measurements
- Acoustic leakage detection
- Low-frequency sound sources in the near field
- High-frequency sound sources in the far field

Tel.: +49 30 814563-750 Fax: +49 30 814563-755 E-Mail: info@gfaitech.de

Fibonacci72 AC Pro

72 CHANNEL SYSTEM FOR BEAMFORMING AND HOLOGRAPHY – FAR FIELD AND NEAR FIELD

TECHNICAL DATA

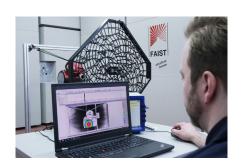
Size and Weight

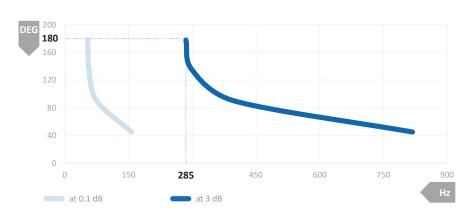
Array-body	79 x 79 x 17 cm
dimensions	
Weight	9 kg

Features

1 Catal Co	
Video camera	2x Baumer
	VLG-22C (1x wide-
	angle lens)
Resolution	1920 x 1080
	(Full HD)

Operating Conditions


Ingress	IP20
protection code	
Cable length to	Up to 20 m
data recorder	(on request: 50 m)
Operating	0°C - 45°C, up to
environment	80% RH


Microphone Data

Microphones	Electret condenser capsule
	+ special designed preamplifier
Frequency response	100 Hz – 15 kHz (< 0.5 dB)
	20 Hz – 20 kHz (< 3 dB)
Max. sound pressure level	130 dB Peak at 3% THD
Noise level	27 dB(A)
Sensitivity	20 mV/Pa

Array Data

Allay Data	
Channels	72
Recommended measurement distance	SONAH: 10 – 20 cm
	HELS: 0 – 10 cm
	BF: > 0.8 m
Acoustic mapping range	9 dB – 130 dB
Recommended mapping frequencies	SONAH: 40 Hz – 2 kHz
	HELS: 30 Hz – 400 Hz
	BF: 285 Hz – 20 kHz
Dynamic range*	14 dB – 20 dB, up to 50 dB with
	Advanced Algorithms

Calculation of the lowest frequency (Hz) at 180° opening angle (DEG)

^{*} Distance to the source: 1 m; calculation points: 90,000